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Abstract. Utilizing the state-independent projection technique, we obtain a general formula
for the cyclotron-transition linewidth for anisotropic deformation potential phonon scattering.
The formula is applied to calculate the width in Ge at low temperatures. It is shown that the
transition between the two lowest adjacent Landau levels makes the most contribution to the
temperature and the magnetic field dependence of the width, and the result agrees better with
the experiment as the higher-order contributions are included. The width increases with the
magnetic field, implying that the interaction of electrons with acoustic phonons increases with
the field.

1. Introduction

Transport phenomena for electrons and holes in non-polar semiconductors are determined by
interactions with acoustic vibrations of the lattice as well as by the scattering of impurities or
other lattice defects. In particular, the interaction of the carriers with the acoustic mode of the
lattice through deformation potentials generally predominates in the relatively pure materials
in which the concentration of carriers is small. Bardeen and Shockley (1950) showed that for
the non-degenerate and spherical energy surfaces in the Brillouin zone the lattice scattering
is determined by the shifts in the energy bands resulting from dilation associated with
longitudinal acoustic waves. Herring and Vogt (1956), generalized this theory to include
anisotropic scatterings of the acoustic phonons for many-valley semiconductors.

The conduction bands of Ge and Si have many equivalent energy surfaces in the Brillouin
zone. Because the constant-energy surfaces are ellipsoidal, shear strains as well as dilation
strains can produce the deformation potentials. This shear strain leads to a term that depends
on the direction of the phonon wavevector, and band-edge shifts are expected to depend on
all six components of the shear tensor. Thus there might be as many as six deformation
potentials. However, the ellipsoidal energy surfaces of Ge and Si are centred on the high-
symmetry〈111〉 and〈100〉 axes, respectively, so the symmetry properties allow a reduction
to just two independent potentials (Herring and Vogt 1956). These are the dilation potential
4d and the uniaxial shear potential4u.

The deformation potentials for Ge and Si can be determined by utilizing measurements
of the piezoresistance and magnetoresistance (Morinet al 1957, Herring et al 1959,
Aubrey et al 1963, Fritzsche 1959, 1960), acoustoelectric effect (Weinreichet al 1959),
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influence of uniaxial stress on the indirect absorption edge (Balslev 1966, 1967), free-
carrier piezobirefringence (Riskaer 1966), cyclotron resonance (CR) (Bagguleyet al 1962,
Ito et al 1964, Stradling and Zhukov 1966, Muraseet al 1970), optical determination of
donor impurities (Reuszer and Fisher 1964, Wilson 1964), electronic effect on the elastic
constant (Hall 1965), etc. The deformation potentials obtained by the above methods have
different values in the range given by4u = 16.0 to 20 eV and4d = −10.2 to −13.5 eV
for Ge, while4u = 7.7 to 11.3 eV and4d = −3.4 −6.0 eV for Si. The values for each of
the cases are different beyond their experimental errors.

In the CR experiments, the cyclotron-resonance linewidth (CRLW) was measured when
the magnetic field was applied parallel or perpendicular to the major ellipsoidal axis of
a valley. We shall denote the half-CRLWs of the CR absorption spectrum asξ‖ for the
parallel direction andξ⊥ for the perpendicular one. It is general that the CRLWs are written
in terms of the corresponding collision times—that is,ξ‖ ≡ 1/τ1 and ξ⊥ ≡ 1/τ2. For
many-valley semiconductors with anisotropic scattering, Herring and Vogt (1956) evaluated
the relaxation times which reduced toτ‖ and τ⊥. In subsequent papers (Bagguleyet al
1962, Itoet al 1964, Stradling and Zhukov 1966, Muraseet al 1970) on the CRLW, to get
the theoretical expressions for the relaxation times for anisotropic phonon scattering, the
relations between the collision times for the half-CRLWs and the Herring–Vogt relaxation
times given by (Bagguleyet al 1962)

1

τ1
= 1

τ⊥
(1.1)

and

1

τ2
= 1

2

(
1

τ⊥
+ 1

τ‖

)
(1.2)

were adopted. The anisotropic ratioτ‖/τ⊥ is represented in terms of just the ratio
(D ≡ 4d/4u) of the deformation potential constants (Herring and Vogt 1956). Therefore,
the ratioD of the deformation potential constants could be determined from the anisotropy
ratio for the measured half-CRLWs through the relations (1.1) and (1.2). Using this value
of D, the other deformation potential constant could be determined from fitting a calculated
relaxation time to the corresponding experimental data. However, these methods for
getting the two deformation potential constants encountered difficulty due to the overlapping
between the absorption spectrum of the heavy hole and that of the electron, because the
experiments were performed for the so-called classical limit (kBT > h̄ω, whereT is the
temperature andω the frequency of the applied eletromagnetic wave). Another problem
is that the measured CRLW, in addition to a temperature dependence, also has a slight
dependence on frequency for both Si (Hensel 1963) and Ge (Koboriet al 1990). Thus the
ratio D can only be obtained by using the Herring–Vogt equations for the relaxation times,
which have no frequency dependence.

In a recent paper (Cho and Choi 1996), we derived a theory of CRLWs based on
the state-independent projection technique and applied the theory to obtain CRLWs of Ge
for the lowest-level transition in the quantum limit(kBT � h̄ω). The theoretical results
were obtained for the acoustic deformation potential scattering and were compared with
the corresponding experimental data for Ge. From fitting the theoretical results to the
experimental data, we determined the uniaxial and dilation deformation potentials for the
anisotropic band model as4u = 18.0± 0.6 eV, 4d = −12.2± 0.68 eV. However, the line-
shape formula used in our work (Cho and Choi 1996) was formulated for the temperature
region of the quantum limit and thus application to real systems is limited.
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In the present work, we will generalize the theory of Cho and Choi (1996) to include the
cyclotron transitions between higher Landau levels for anisotropic scattering. The present
theory is based on the state-independent projection technique, and thus is quite different
to our previous ones (Choi and Chung 1983, Cho and Choi 1993, 1994). The linewidths
can be obtained straightforwardly without direct connection with the power function, and
the anisotropy of the material structure can be dealt with easily (see section 3). In this
sense, this theory is more or less similar to the theory of Peeters and Devreese (Peeters and
Devreese 1983, Wuet al 1986). In section 2, we will reformulate the theory in such a way
that all of the higher-order contributions can be taken into account. In section 3, we will
apply the theory to the anisotropic electron–phonon scattering, and in section 4, we will
calculate the half-CRLWs of Ge. The temperature and magnetic field dependences will be
investigated in comparison with the existing experimental data. Except for the inclusion of
higher-order transitions, the approach is similar to that adopted in our previous paper (Cho
and Choi 1996). Section 5 will be devoted to concluding remarks.

2. The cyclotron resonance line-shape formula

In this section we will generalize the lineshape formula based on the state-independent
projection technique already introduced in previous work (Cho and Choi 1996).

At low temperatures, the transport phenomena of electrons in non-polar semiconductors
such as pure Ge and pure Si are generally determined by the scattering of acoustic phonons.
We consider such a system as an electron–phonon interacting system whose Hamiltonian is
given by

Heq = Hel + Hph + Hel-ph. (2.1)

Each part of this Hamiltonian is expressed, in the second-quantized formalism, as

Hel =
∑

α

〈α|hel|α〉a+
α aα (2.2)

Hph =
∑
q,s

h̄ωq,sb
+
q,sbq,s (2.3)

Hel-ph =
∑
q,s

∑
α,µ

Vq,s〈α|exp(iq · r)|µ〉a+
α aµ(bq,s + b+

−q,s) (2.4)

wherea+
α (aα) andb+

±q,s (b±q,s), respectively, denote the creation (annihilation) operators
for an electron in the state|α〉 and for a phonon in the state|±q, s〉, h̄ωq,s is the phonon
energy,q the phonon wave vector,s the index of the phonon mode, andVq,s the coupling
coefficient for the electron–phonon interaction.

The Ge and Si conduction bands have many equivalent ellipsoidal energy surfaces in the
first Brillouin zone. If a static magnetic fieldB is applied along the major axis of an ellipsoid
(the z-direction), the eigenvalue of the single-electron Hamiltonianhel in equation (2.2) is
given by

hel|α〉 = (ENα,kzα
+ EC)|α〉. (2.5)

Here |α〉 ≡ |Nα, kyα, kzα〉 is the Landau state of the level indexNα and the electron wave
vector kα. Also EC is the bottom of the conduction band, andENα,kzα

the Landau energy
level given by

ENα,kzα
= (Nα + 1/2)h̄ωc + h̄2k2

zα/2ml (2.6)

where ωc (≡eB/mt ) is the CR frequency of the electrons andml (mt ) the longitudinal
(transverse) effective mass of the electron.
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When a circularly polarized electromagnetic wave with frequencyω and electric field
amplitudeE0 is incident upon the electron–phonon system along thez-axis, the absorption
power density of the electrons is given by

P(ω, ωc, T ) = Pmax(ω, T )
ξ(ω, T )2

(ω − ωc)2 + ξ(ω, T )2
. (2.7)

Here the maximum absorption power intensity is

Pmax(ω, T ) = e2E2
0n(ω, T )

mtξ(ω, T )
(2.8)

where the number density of electrons which participate in constructing the absorption peak
is

n(ω, T ) = gvω(2πmlm
2
t kBT )1/2 exp[−(EC − ζ )/kBT ]

4π2h̄2 sinh(h̄ω/2kBT )
. (2.9)

Here,ζ is the chemical potential for an electron, and the averaged relaxation rate is

ξ(ω, T ) = h̄

(2πmlkBT )1/2
[1 − exp(−h̄ω/kBT )]2

∞∑
N=0

(N + 1) exp(−Nh̄ω/kBT )

×
∫ ∞

−∞
dkz exp(−h̄2k2

z /2mlkBT )γ (ω, T , N, kz) (2.10)

in which the energy-dependent relaxation rate is

γ (ω, T , N, kz) = gv

2πh̄

∑
s

∑
N ′=N,N+1

∫ ∞

0
dq⊥

∫ ∞

−∞
dqz q⊥|Vq,s |2K(N, N ′; t)

×
{
Nq,sδ[(1 − N ′ + N)h̄ω − h̄2(q2

z + 2kzqz)/2ml + h̄ωq,s ]

+ (Nq,s + 1)δ[(1 − N ′ + N)h̄ω − h̄2(q2
z − 2kzqz)/2ml − h̄ωq,s ]

}
. (2.11)

(For a derivation, see equations (5)–(11) of Cho and Choi (1996).) Heregv is the degeneracy
due to the equivalent valleys,q⊥ ≡ (q2

x + q2
y )

1/2, t ≡ h̄q2
⊥/2mtω, K(N, N ′; t) is the K-

matrix (Cho and Choi 1994), andNq,s is the Bose–Einstein distribution function for phonons
with energyh̄ωq,s . In equation (2.11), we have excluded the part with|N ′ − N | > 1 since
its contribution is negligible in conparison with the part with|N ′ − N | = 0 and 1. The
conduction electron states of pure semiconductors are non-degenerate and the Fermi energy
is nearly in the middle of the bottom of the conduction band and the top of the valence band.
Thus in equation (2.10), the electron distribution for the Landau levels, constructed above
the bottom of the conduction band, is proportional to the factor of exp[−Nh̄ωc/kBT ], where
N is the Landau level index. Therefore, the cyclotron resonance is mainly controlled by the
electron transitions between the two lowest Landau levels. However, for metals and doped
semiconductors with degenerate electron states, the cyclotron resonance is mainly controlled
by the electron transitions between two neighbouring Landau levels near the Fermi surface.

Considering the energy and momentum conservation from theδ-functions, we see that
the first and second terms of equation (2.11) represent the absorption and emission processes
of phonons, respectively, when the electrons in Landau levelN absorb the photon energy ¯hω

and make a cyclotron transition to the excited states of Landau levelN ′. In equations (2.9)
and (2.11),gv is inserted since each CR absorption power peak is constructed only by the
electrons of the equivalent valleys with the same inner angle between the major axes of
the valleys and the direction of the magnetic fieldB. When the magnetic field is applied
along the major axes of the valleys—that is,〈111〉 for Ge—two peaks appear. If we are
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concerned only about the absorption peak for the cyclotron effective mass ofmt , gv = 1 for
Ge. Note that the averaged relaxation rate of equation (2.10) is equal to the half-CRLW,
since the spectrum of the absorption power intensity forωc has a form of Lorentzian shape.

3. The averaged relaxation rate for anisotropic electron–phonon scattering

In anisotropic solids such as Ge and Si, the velocities of acoustic waves are different for
different directions of propagation. However, the difference is not especially large (Bardeen
and Shockley 1950), and thus we assume that the speed of sound is independent of the
direction of propagation. Then we can define the coupling coefficient for the longitudinal
mode as

Vq,L = i(h̄q/2ρmv̄L)1/2(4d + 4u cos2 θq) (3.1)

and that for the sum of two branches of the transverse mode as

Vq,T = i(h̄q/2ρmv̄T )1/24u sinθq cosθq (3.2)

whereθq is the inner angle between the major ellipsoidal axis and the phonon wave vector
q, and ρm is the mass density of the bulk. Also, the average speed of soundv̄L (v̄T ),
or the average speed of the longitudinal (transverse) acoustic phonon, can be defined as
v̄L = (cL/ρm)1/2 and v̄T = (cT /ρm)1/2 in which the average elastic constants are given by
cL = (3c11 + 2c12 + 4c44)/5 andcT = (c11 − c12 + 3c44)/5 where thecij are the elastic
stiffness constants (Ridley 1988).4u and 4d are the uniaxial and the dilation potential
constants. In this scheme the state-dependent relaxation rate of equation (2.11) is rewritten
as

γ (ω, T , N, kz) = γ
(+)
L + γ

(−)
L + γ

(+)
T + γ

(−)
T (3.3)

where the subscriptL (T ) and the superscript+ (−), respectively, represent the longitudinal
(transverse) mode of phonons and the phonon absorption (emission) process. If the direction
(the z-axis) of the magnetic field is arranged along the major axis of a valley, sinθq and
cosθq can be replaced byq⊥/q andqz/q, respectively. Therefore, by taking into account
equations (3.1) and (3.2) in equation (2.11), each part of equation (3.3) is given by

γ
(±)
L = gv4

2
u

4πρmv̄L

∑
N ′=N,N+1

∫ ∞

0
dq⊥

∫ ∞

−∞
dqz qq⊥[D + (qz/q)2]2K(N, N ′; t)

× (Nq,L + 1/2 ∓ 1/2)δ[(1 − N ′ + N)h̄ω − h̄2(q2
z ± 2kzqz)/2ml ± h̄v̄Lq]

(3.4)

and

γ
(±)
T = gv4

2
u

4πρmv̄T

∑
N ′=N,N+1

∫ ∞

0
dq⊥

∫ ∞

−∞
dqz (q3

⊥q2
z /q

3)K(N, N ′; t)

× (Nq,T + 1/2 ∓ 1/2)δ[(1 − N ′ + N)h̄ω − h̄2(q2
z ± 2kzqz)/2ml ± h̄v̄T q]

(3.5)

whereD ≡ 4d/4u. To obtain the averaged relaxation rate, we should perform the triple
integrations in equations (3.4) and (3.5). Theq⊥-integration is trivial, since its integrand
has aδ-function, but the other integrations are very complex. Therefore, we shall first
obtain the analytical solution for theq⊥-part, and then the numerical calculations of the rest
through computer work.
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To carry out the integrations overq⊥ in equations (3.4) and (3.5), we first obtain the
roots of the arguments of theδ-functions as

q±
L =

{[
(1 − N ′ + N)h̄ω − h̄2(q2

z ± 2kzqz)/2ml

]2
/(h̄v̄L)2 − q2

z

}1/2
(3.6)

and

q±
T =

{[
(1 − N ′ + N)h̄ω − h̄2(q2

z ± 2kzqz)/2ml

]2
/(h̄v̄T )2 − q2

z

}1/2
(3.7)

respectively. These solutions have to be valid within the ranges

∓(1 − N ′ + N)h̄ω ± h̄2(q2
z ± 2kzqz)/2ml > 0 (3.8)

determined from the arguments of theδ-functions in equations (3.4) and (3.5) and

[(1 − N ′ + N)h̄ω − h̄2(q2
z ± 2kzqz)/2ml ]

2/(h̄v̄L)2 − q2
z > 0 (3.9)

[(1 − N ′ + N)h̄ω − h̄2(q2
z ± 2kzqz)/2ml ]

2/(h̄v̄T )2 − q2
z > 0 (3.10)

determined from the arguments of the square roots in equations (3.6) and (3.7), respectively.
Then performing the integrations overq⊥ in equations (3.4) and (3.5), the results are

given by

γ
(±)
L = gv4

2
u

4πρmh̄v̄2
L

∑
N ′=N,N+1

∫ a±
2

a±
1

dqz (q±2
L + q2

z )

(
D + q2

z

q±2
L + q2

z

)2

× K(N, N ′; h̄q±2
L /2mtω)[N(q±

L , qz) + 1/2 ∓ 1/2] (3.11)

and

γ
(±)
T = gv4

2
u

4πρmh̄v̄2
T

∑
N ′=N,N+1

∫ b±
2

b±
1

dq ′
z

q±2
T q ′

z
2

q±2
T + q ′

z
2
K(N, N ′; h̄q±2

T /2mtω)

× [N(q±
T , qz) + 1/2 ∓ 1/2] (3.12)

where

N(q±
L(T ), qz) = 1/[exp{h̄v̄L(T )(q

±2
L(T ) + q2

z )
1/2/kBT } − 1].

Also, thea+
i (a−

i ) are determined by the upper (lower) parts of equations (3.8) and (3.9),
andb+

i (b−
i ) by the upper (lower) parts of equations (3.8) and (3.10).

4. The half-cyclotron-resonance linewidth of Ge

The Ge conduction band has four ellipsoidal energy surfaces along the〈111〉 axes at the
L point in the first Brillouin zone. Among the values of the physical parameters for
Ge, the elastic stiffness constants (Ferry 1991) are given byc11 = 1.29 × 1011 N m−2,
c12 = 0.48× 1011 N m−2, andc44 = 0.67× 1011 N m−2. The other values are given in the
paper of Cho and Choi (1994).

In order to obtain the temperature and magnetic field dependence of the half-cyclotron-
resonance linewidth, we need to determine the two deformation potentials. In our recent
paper (Cho and Choi 1996), we showed that the two deformation potentials could be
determined by fitting the CRLW calulated in the quantum limit to the corresponding
experimental data. In the quantum limit, most of the conduction electrons reside on
the lowest Landau level. So we shall take into account only the transitions from the
lowest Landau states|0, kz〉 to the excited states|0, kz ± qz〉 or |1, kz ± qz〉. Then N in
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equations (3.11) and (3.12) is set asN = 0. In this case, the averaged relaxation rate of
equation (2.10) in the quantum limit(kBT � h̄ω) can be approximated as

ξ(ω, T )QL ' h̄

(2πmlkBT )1/2

∫ ∞

−∞
dkz exp(−h̄2k2

z /2mlkBT )γ (ω, T , 0, kz) (4.1)

of which the form is simply a Boltzmann average of the state-dependent relaxation rate
γ (ω, T , 0, kz). Using equation (4.1), we determine ratio of the two deformation potentials
asD = −0.68± 0.03 from fitting the anisotropy ratio for CRLWs to the experimental data
(Muraseet al 1970) and the uniaxial deformation potential as4u = 18.0 ± 0.6 eV from
fitting the temperature dependence of the half-CRLW to the experimental data (Koboriet
al 1990) forλ (wavelength) = 220 µm.

Figure 1. The temperature dependence of the half-CRLW of pure Ge atλ = 119 µm and with
the magnetic field along the〈111〉 direction. The solid line shows the total half-CRLW. The
dotted lines denote the half-CRLWs due to the cyclotron transitions between the Landau levels
N andN + 1. The open circles show the experimental data of Koboriet al (1990).

The temperature dependence of the half-linewidth is shown in figure 1. The symbol
0 → 1 represents the half-linewidth for the cyclotron transition in the quantum limit and
the others (N → N + 1, for N > 1) represent those for the cyclotron transitions between
the higher Landau levels. With the value ofD obtained above we can fit the solid line of
the total half-CRLW to the experimental data (Koboriet al 1990) forλ = 119µm and then
obtain the uniaxial deformation potential as4u = 16.7 ± 0.51 eV. For the temperatures
below about 50 K, the half-CRLW formula for the quantum limit describes the experimental
data well. However, for the classical-limit region, the difference between the quantum-limit
theoretical values and the experimental data increases. When the cyclotron transitions for
the higher Landau levels are considered, the theoretical result is improved but there still
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exists some discrepancy, which may stem from the scattering of the longitudinal optical
deformation potential.

Figure 2. The magnetic field dependence of the half-CRLW of pure Ge atT = 20 K and with
the magnetic field along the〈111〉 direction. The solid line shows the total half-CRLW. The
dotted lines denote the half-CRLWs due to the cyclotron transitions between the Landau levels
N andN + 1. The open circles show the experimental data of Koboriet al (1990).

The magnetic field dependence of the half-CRLW for pure Ge is shown in figure 2.
We see that the half-CRLW for pure Ge increases slightly with the magnetic field intensity.
The maximum power intensity in equation (2.8) is related to the number density of the
electrons and the half-CRLW. The maximum power intensity may be affected mainly by
the number density of the electrons, since the concentration is a very fast-varying function
in comparison with the half-CRLW. As the magnetic field intensity increases, the number
density is decreased and the maximum power intensity decreases but the linewidth becomes
broader. So, we see that the interaction between the electrons and the acoustic phonons
becomes stronger as the magnetic field intensity increases, since the average energy per
electron increases.

5. Concluding remarks

Using the state-independent projection operator technique (Cho and Choi 1996), we have
obtained the half-CRLW formula in which the cyclotron transitions between the higher
Landau levels are considered. We have applied this formula to pure Ge and obtained the
temperature and the magnetic field dependence of the half-CRLW.

For temperatures below about 50 K, the present quantum-limit formula describes the
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experimental data well. When the cyclotron transitions for the higher Landau levels
are considered, the theoretical result is improved with only a small discrepancy. This
discrepancy may stem from the scattering of the longitudinal optical deformation potential.

For metals and semiconductors with degenerate electron states, the cyclotron resonance
is mainly controlled by the electron transitions between two neighbouring Landau levels
near the Fermi surface. However, for semiconductors with non-degenerate electron states,
the electron transitions between two lowest Landau levels provide the main contribution
to the cyclotron transition. The cyclotron transitions for the higher Landau levels may be
negligible for the region of the quantum limit but should be considered for the region of
the classical limit as shown in figure 1. Therefore, the present calculation is more rigorous
than previous ones (Bagguleyet al 1962, Cho and Choi 1994, Itoet al 1964, Koboriet al
1990, Stradling and Zhukov 1966).

The half-CRLW increases slightly with the magnetic field intensity. Therefore, we
argue that the electron–phonon interaction becomes stronger as the magnetic field intensity
increases, since the average energy per electron increases.
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